Pressure-dependent effect of shock waves on rat brain: induction of neuronal apoptosis mediated by a caspase-dependent pathway.

نویسندگان

  • Kaoruko Kato
  • Miki Fujimura
  • Atsuhiro Nakagawa
  • Atsushi Saito
  • Tomohiro Ohki
  • Kazuyoshi Takayama
  • Teiji Tominaga
چکیده

OBJECT Shock waves have been experimentally applied to various neurosurgical treatments including fragmentation of cerebral emboli, perforation of cyst walls or tissue, and delivery of drugs into cells. Nevertheless, the application of shock waves to clinical neurosurgery remains challenging because the threshold for shock wave-induced brain injury has not been determined. The authors investigated the pressure-dependent effect of shock waves on histological changes of rat brain, focusing especially on apoptosis. METHODS Adult male rats were exposed to a single shot of shock waves (produced by silver azide explosion) at overpressures of 1 or 10 MPa after craniotomy. Histological changes were evaluated sequentially by H & E staining and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL). The expression of active caspase-3 and the effect of the nonselective caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-FMK) were examined to evaluate the contribution of a caspase-dependent pathway to shock wave-induced brain injury. High-overpressure (> 10 MPa) shock wave exposure resulted in contusional hemorrhage associated with a significant increase in TUNEL-positive neurons exhibiting chromatin condensation, nuclear segmentation, and apoptotic bodies. The maximum increase was seen at 24 hours after shock wave application. Low-overpressure (1 MPa) shock wave exposure resulted in spindle-shaped changes in neurons and elongation of nuclei without marked neuronal injury. The administration of Z-VAD-FMK significantly reduced the number of TUNEL-positive cells observed 24 hours after high-overpressure shock wave exposure (p < 0.01). A significant increase in the cytosolic expression of active caspase-3 was evident 24 hours after high-overpressure shock wave application; this increase was prevented by Z-VAD-FMK administration. Double immunofluorescence staining showed that TUNEL-positive cells were exclusively neurons. CONCLUSIONS The threshold for shock wave-induced brain injury is speculated to be under 1 MPa, a level that is lower than the threshold for other organs. High-overpressure shock wave exposure results in brain injury, including neuronal apoptosis mediated by a caspase-dependent pathway. This is the first report in which the pressure-dependent effect of shock wave on the histological characteristics of brain tissue is demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Cytochrome C and Caspase-3/7 are Involved in Mycophenolic Acid-induced Apoptosis in Genetically Engineered PC12 Neuronal Cells Expressing the p53 Gene

Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil. This study designed to investigate the mechanism of cytotoxicity of MPA on the genetically engineered PC12 Tet Off (PTO) neuronal cells with p53 gene. Alamar Blue (AB) reduction showed concentration-dependent cytotoxicity of MPA on PTO cells with IC50 value of 32.32 ± 4.61 mM. The reactive oxygen species (ROS) generation...

متن کامل

Cytochrome C and Caspase-3/7 are Involved in Mycophenolic Acid-induced Apoptosis in Genetically Engineered PC12 Neuronal Cells Expressing the p53 Gene

Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil. This study designed to investigate the mechanism of cytotoxicity of MPA on the genetically engineered PC12 Tet Off (PTO) neuronal cells with p53 gene. Alamar Blue (AB) reduction showed concentration-dependent cytotoxicity of MPA on PTO cells with IC50 value of 32.32 ± 4.61 mM. The reactive oxygen species (ROS) generation...

متن کامل

Relaxatory Effect of Gamma-Aminobutyric Acid (GABA) is Mediated by Same Pathway in Diabetic and Normal Rat Mesenteric Bed vessel

Objective(s) Diabetes related dysfunction of resistance vessels is associated with vascular occlusive diseases. Vasorelaxant agents may have a role in control of diabetic cardiovascular complications. Gamma aminobutyric acid (GABA) has demonstrated to cause vasorelaxation. The present study was designed to determine i) the vasorelaxatory effect of GABA on diabetic vessels and ii) the role of e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurosurgery

دوره 106 4  شماره 

صفحات  -

تاریخ انتشار 2007